43,318 research outputs found

    The HST Cosmos Project: Contribution from the Subaru Telescope

    Full text link
    The Cosmic Evolution Survey (COSMOS) is a Hubble Space Telescope (HST) treasury project.The COSMOS aims to perform a 2 square degree imaging survey of an equatorial field in II(F814W) band, using the Advanced Camera for Surveys (ACS). Such a wide field survey, combined with ground-based photometric and spectroscopic data, is essential to understand the interplay between large scale structure, evolution and formation of galaxies and dark matter. In 2004, we have obtained high-quality, broad band images of the COSMOS field (B,V,r,i,B, V, r^\prime, i^\prime, and z z^\prime) using Suprime-Cam on the Subaru Telescope, and we have started our new optical multi-band program, COSMOS-21 in 2005. Here, we present a brief summary of the current status of the COSMOS project together with contributions from the Subaru Telescope. Our future Subaru program, COSMOS-21, is also discussed briefly.Comment: 4 pages, 3 figures, to appear in the Proceedings of the 6th East Asian Meeting on Astronomy, JKAS, 39, in pres

    Large Structures and Galaxy Evolution in COSMOS at z < 1.1

    Get PDF
    We present the first identification of large-scale structures (LSS) at z <1.1< 1.1 in the Cosmic Evolution Survey (COSMOS). The structures are identified from adaptive smoothing of galaxy counts in the pseudo-3d space (α,δ\alpha,\delta,z) using the COSMOS photometric redshift catalog. The technique is tested on a simulation including galaxies distributed in model clusters and a field galaxy population -- recovering structures on all scales from 1 to 20\arcmin without {\it a priori} assumptions for the structure size or density profile. Our procedure makes {\bf no} {\it a priori} selection on galaxy spectral energy distribution (SED, for example the Red Sequence), enabling an unbiased investigation of environmental effects on galaxy evolution. The COSMOS photometric redshift catalog yields a sample of 1.5×1051.5\times10^5 galaxies with redshift accuracy, ΔzFWHM/(1+z)0.1\Delta z_{FWHM}/(1+z) \leq 0.1 at z <1.1< 1.1 down to IAB25_{AB} \leq 25 mag. Using this sample of galaxies, we identify 42 large-scale structures and clusters. abstract truncated for astroph 25 line limit -- see preprintComment: 72 pages with 29 pages of figures, for cosmos apj suppl special issu

    The XMM-Newton Wide-Field Survey in the COSMOS Field: Statistical Properties of Clusters of Galaxies

    Get PDF
    We present the results of a search for galaxy clusters in the first 36 XMM-Newton pointings on the Cosmic Evolution Survey (COSMOS) field. We reach a depth for a total cluster flux in the 0.5-2 keV band of 3 × 10^(-15) ergs cm^(-2) s^(-1), having one of the widest XMM-Newton contiguous raster surveys, covering an area of 2.1 deg^2. Cluster candidates are identified through a wavelet detection of extended X-ray emission. Verification of the cluster candidates is done based on a galaxy concentration analysis in redshift slices of thickness 0.1-0.2 in redshift, using the multiband photometric catalog of the COSMOS field and restricting the search to z S)-log S distribution compares well with previous results, although yielding a somewhat higher number of clusters at similar fluxes. The X-ray luminosity function of COSMOS clusters matches well the results of nearby surveys, providing a comparably tight constraint on the faint-end slope of α = 1.93 ± 0.04. For the probed luminosity range of (8 × 10^(42))-(2 × 10^(44)) ergs s^(-1), our survey is in agreement with and adds significantly to the existing data on the cluster luminosity function at high redshifts and implies no substantial evolution at these luminosities to z = 1.3

    Lyman Alpha Emitters at Redshift 5.7 in the COSMOS Field

    Get PDF
    We present results from a narrow-band optical survey of a contiguous area of 1.95 deg^2, covered by the Cosmic Evolution Survey (COSMOS). Both optical narrow-band (lambda_c = 8150 AA and Delta_lambda = 120 AA) and broad-band (B, V, g', r', i', and z') imaging observations were performed with the Subaru prime-focus camera, Suprime-Cam on the Subaru Telescope. We provide the largest contiguous narrow-band survey, targetting Ly alpha emitters (LAEs) at z~5.7. We find a total of 119 LAE candidates at z~5.7. Over the wide-area covered by this survey, we find no strong evidence for large scale clustering of LAEs. We estimate a star formation rate (SFR) density of ~7*10^-4 M_sun yr^-1 Mpc^-3 for LAEs at z~5.7, and compare it with previous measurements.Comment: 26 pages, 19 figures. to appear in the ApJ Supplement COSMOS Special Issu

    The Cosmic Evolution Survey (COSMOS) -- Overview

    Get PDF
    The Cosmic Evolution Survey (COSMOS) is designed to probe the correlated evolution of galaxies, star formation, active galactic nuclei (AGN) and dark matter (DM) with large-scale structure (LSS) over the redshift range z >0.5> 0.5 to 6. The survey includes multi-wavelength imaging and spectroscopy from X-ray to radio wavelengths covering a 2 \sq\deg area, including HST imaging. Given the very high sensitivity and resolution of these datasets, COSMOS also provides unprecedented samples of objects at high redshift with greatly reduced cosmic variance, compared to earlier surveys. Here we provide a brief overview of the survey strategy, the characteristics of the major COSMOS datasets, and summarize the science goals.Comment: 22 pages, 3 figure

    Radio and Millimeter Observations of the COSMOS Field

    Get PDF
    The Cosmic Evolution Survey (COSMOS) targets an equatorial two square degree field covering the full electromagnetic spectrum. Here we present first results from observations of the COSMOS field in the millimeter and centimeter regime done with the IRAM 30m/MAMBO array and NRAO's Very Large Array (VLA) at 250GHz and 1.4GHz, respectively

    Seeing the sky through Hubble's eye: The COSMOS SkyWalker

    Get PDF
    Large, high-resolution space-based imaging surveys produce a volume of data that is difficult to present to the public in a comprehensible way. While megapixel-sized images can still be printed out or downloaded via the World Wide Web, this is no longer feasible for images with 10^9 pixels (e.g., the Hubble Space Telescope Advanced Camera for Surveys [ACS] images of the Galaxy Evolution from Morphology and SEDs [GEMS] project) or even 10^10 pixels (for the ACS Cosmic Evolution Survey [COSMOS]). We present a Web-based utility called the COSMOS SkyWalker that allows viewing of the huge ACS image data set, even through slow Internet connections. Using standard HTML and JavaScript, the application successively loads only those portions of the image at a time that are currently being viewed on the screen. The user can move within the image by using the mouse or interacting with an overview image. Using an astrometrically registered image for the COSMOS SkyWalker allows the display of calibrated world coordinates for use in science. The SkyWalker "technique" can be applied to other data sets. This requires some customization, notably the slicing up of a data set into small (e.g., 256^2 pixel) subimages. An advantage of the SkyWalker is the use of standard Web browser components; thus, it requires no installation of any software and can therefore be viewed by anyone across many operating systems.Comment: 4 pages, 2 figures, accepted for publication in PAS
    corecore